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We examine the problem posed in [ 1, 23 , of the evasion of a conflict-controlled 

motion from a gfven set. We investigate the case of a nonlinear system of dif- 

ferential equations which specify the dynamics, and of a terminal set of complex 
structure, We have obtained sufficient conditions for evasion. As an application 

we examine the problem of evasion in differential games with phase constraints 

and the problem of escaping from many pursuers. We illustrate the results ob- 
tained by examples. 

1. Let the law of motion of an object be given by the equation 

2’ = f (z, u, v), z E En (1.1) 

Here the control parameters u and v are chosen from sets U and v belonging to E”. 
A terminal set M is specified. The game is played by two players P and E, who influ- 

ence system (1.1) by means of controls u and 71. Player P tries to lead out the trajec- 

tory of (1.1) onto set M, while player E hinders this action. 
The game parameters satisfy the following requirements : 

(1). The function f (z, U, 8) is continuous in the arguments and is continuously 
differentiable in z. 

(2). The sets U and T’ are compact. 

(3). The set f fz, U, V) is convex for any z and U, u E V. 
(4). A constant c exists such that 

(5). The set M is specified as follows : 

r+q 
M = U tori 

i=l 
0.2) 

hfi= 2: 

{ 

Vij(z) = 0, j = 1,2,. . . , m(i) 

Cpij(z)< 0, i = m(i) + 1, m(i) + 2,. . . Z(i) I ’ 
i=i,2,...,r 

Mi = O:Cpi (z, p) < 09 VP E EnI, i=rfl, r+2,...,r+q 

Here Cpij (z) are continuously differentiable functions, (pi (z, p)=(z, p) - Wicri (p), 
F!‘M~ (P) is the support function of the closed convex setk’i. 

Let us recall the definition of ~-strategies [3] which we shall use subsequently. 
Definition 1. We say that an P-strategy (r~) of player E is given if for each 
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point z E p there have been determined a number E (a), a (z) > 0, and a function 

l?E (t; z), 0 < t < 8 (z), satisfying the following condition : 2, it) -_ rE (t; 2) is a 
measurable function of t, taking values in set v. 

Definition 2. We say that an a-strategy (rP) of player P is specified if for 
each point z E En there has been determined a function rP (t; a, v (. ), z) which 
associates with point z, with a number a > 0 , and with the function ZI (t),Odt ,<a, 

a function u(t)= rP (t; E, v (e), ) z , measurable for 0 < t < t, taking values in TJ. 
Definition 3. We say that a trajectory z (t), starting at a point zO, has been 

determined on the half-open interval [0, t,,) or on the closed interval [0, t,] if z (t) 

is an absolutely continuous function of t, z (0) = z,, ,and a set T C [O, t,) (respec- 
tively, T c 10, t,,]) exists such that 

a) 0 E I’ and if r E 2’ and e (z (I$) + 7 < t, (Z A- E (Z (T)) < to for lO,t,]), 
then z + E (z it)) E T and the interval (T, -c + E (z (T))) does not contain points 

of T; 

b) the set T U {to} closed ; 
c) if we denote z,, = sup {z: z E T}, then the function z (t) satisfies almost 

everywhere the equation z’ = f (Z, u (t>, 2’ (t)), V (t) = FE (t - z; 2 (T)), u @) = 

rp (t - T; E (z (z)), v (s), z (T)) on each interval lz, t’l, z’ = r $ a (Z (7)) < to, 
or on the interval I201 to) ([.t,, to]) ; 

d) in the case of the closed interval [0, to], if t0 := to, then t, E T. 
The trajectory z (t) E z (t; zo, Tp, rE) is uniquely defined on the whole semi- 

interval [0, CC) ,by giving an initial point z. and the strategies rP and FE (see [3, 41). 

We say that an evasion from contact with set M from a point z. is possible in game 

(1.1). (1.2) if a strategy rE exists such that for any strategy rP the trajectory z (t) 3 

Z (t; Zok? FE) doesnothitontotheset M for O< t< co. 

2. We shall subsequently use the following notation: 

pi (z) = {p: \Ip II== 1, ‘pi (z, p) > O}, i=r+i, r+&..., r+q 

The time derivatives of the functions cpi (z, p), C+Jij (z) , by virtue of system (1.1) for 

fixed p, U, v are 

Cpp (z, p) E5 dk --$- cpi (z, p) = (Vcplk-l)(z, I-4, f (z, UT v)) 

v@)(z,p)=p, i=r+l,r+2 ,..., r+q, k=l,2,... 

&’ (z) z $ ‘pij (z) = (V&l’ (z), f (z 7 u, 4) 

~~\~J(~)=vp~(z), i=i,2 ,..., r, j=i,2 ,..., l(i), k--i,%..- 

Let Si be an open set containing Mi 
r+rl 

si* = Si\Mi, S* = u ji*, S = S”\M (2.1) 
i=l 

1={1,2,...,r+q), 11={1,2 ,..., rf, I,={r-!-~7r+2~...~r+~J 

For z E S we set 

I(Z)= {i: i E I, z E Si*}, I, (z)= I (z) n 11,1, (2) = I(z) n 12 
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3. We state conditions each succeeding one of which assumes the fulfillment of the 
preceding ones. 

Condition 1. The function f (z, U, V) is differentiable in z up to order i&-l, 

while each of the functions r.pif (z) is continuously differentiable up to order k*inclu- 

sive. 
Condition 2. If z e S and i G 1, (z), then there exist a vector p E Pi (z) 

and number ki = ki (z) < k, such that the functions tpiPf (z, p) (Y = 1, 2, . _ , 
ki - 1) do not depend upon tt and 8 ; moreover, CPPf {z, p) > 0 (v = 1. 2, . _ , 

ki - l), while 
‘pi(“i)(Z, p) = (v$+(z, p), f (2, z&v)) 

In the case z E S, i E I, (z) ,either (a) numbers y = y (i) (1 < Y (i) < i (i)) 

and kil= kil (z, y) < k, exist such that qi.( (z) > 0 , the functions Try(‘) (2) 

(Y = 1, 2, . . . , ki’ - i)do not depend upon u and 7’ ; moreover, tp$) (z) > 

0 {Y = 1, 2, . . . , kil - l),while 

‘pi& (2) = (V$yz), f(z, u, u)) 

or(b) Cpij (z) < 0 for all j, 1 < j < I (i), but numbers P 5 P (i) (1 Q P (4 < 
m (i)) and ki2 = k$ (2, p) < k, exist such that the functions cpiP@) (z) (Y = 1, 2, 
. . ., ki - 1) do not depend upon u and 21 ; moreover, ~iiir@) (z) < 0 (Y = 1, 2, 
. * ., ki2 - $),while 

qQ; (2) = (v&F-r’ (z), f (2, u, V)) 

In what follows cases (a) and (b) of Condition 2 are designated 2a and 2b, respectively. 

Condition 3. The system of inequalities 

$$ (v~~-l)~z, P), f {z, U, V)) > 6 (z), i E 1, (a) (3.1) 

mjn (V&.$+ 
UEU 

(4, f (2, n, 4) > o (z), i E Ii(z) @a) 

~~(v~~~~“~~),~(~, n, n))\< -o(z), iE11(z) (2b) 

where- (3 (z) is some continuous function, strictly positive in any bounded region, is sol- 
vable relative to V, v E V, at each point z,, E s. 

Suppose that conditions 1 - 3 have been satisfied. For the point z E S and for 

i E T (2,) we fix p” CY Pi (z,), ki, kil, ki2, y (i), p (i) and U, = u (z,), satisfy- 
ing (3. If. Let us consider the functions 

X:” (4 =Urng (v($-ll(z)* f (2, n, n,)), f E 1, (zO) (za) 

xt” (2) = m&4; (Vq$+‘(a), f (2, U, no)), i E Ii(&) (2b) 

If z,‘is replaced by some set 2, 2 c S, while for each zO , i takes values fromI( 
then we obtain a family of continuous functions which we denote 

(hf” (2)) Z,EZ, iEl(Z,) (3.2) 
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Condition 4. The family of functions (3. Z), where 2 is a bounded set, is equi- 
continuous on set Z. 

4, Theorem on evasion of contact. In the differential game (1.1). (1.2) 
let there exist a number k, and a set S such that Conditions 1 - 4 are satisfied. Then 
evasion from contact with the terminal set is possible for any point 20, z. ?? kf . 

Proof. Let 20 65 s. For i E I, (zo) , by virtue of Conditions 2, 3 either numbers 
y = y (i), kil and V. = zf (za) E V exist such that 

min (V9pi-f (kw (z*), f ( 201 u, uo)) > 6 (zol,:, 0 
UEU 

or numbers p = p (i), *ki2 and v,-, = V (z,-,) E Ir exist such that 

In the first case we select a neighborhood ti,.; (ri > 0) of point so so small that the 

inequality 
min (Vqiy w-r) (z), f ( 2, u7 vo)) > 0 
UEU 

is satisfied by continuity, while in the second case, the inequality 

(4.1) 

and 

For i E f, (z,) , by virtue of Conditions 2, 3 a vector p E Pi (za) number k, 
and v. = * Go) Ez v exist such that nln”v ~v~~-l) f&J, p), f (zo, u, v,)) > 6 (zo) > 0. 
We select a neighborhood Q,, of point z. such that the inequality 

2; (V$“‘(Z, P)r f (t, u, vo)) a 0 (4.3) 

. . . . 
is satrsfied by ~ntln~~ and g-+ ft (+J+Jz., &&) = 0 

We set 
r. = min ri 

iE.I(Zo) 

From the assumptions on sets li’ and V and on function f (z, U, v) and from the 
Cronwall lemma [s] follows the existence of r. > 0 such that a trajectory starting at 
point z. with an arbitrary measurable control u (t) and with 21 (t)= 8, does not leave the 
neighborhood St, during time zo. Let us construct the evasion strategy rE*. To do this 

we set e (zo) = -co and v (t) = vo, 0 < it \( 70. Then, the control u (t) is determined 

in accord with strategy rp and system (1.1) can be integrated on the interval IO, t,,], 
obtaining trajectory z (t). 

kt z. c S. We select the neighb~h~ Q,,* of point z. such that kf’ n %, = 0. 
Then x0 > 0 exists such that the trajectory starting at point 20 with arbitrary measur- 
able controls u (t) and 21 (t) does not leave the neighborhood a,., during time ‘60. We 
set c (zo) = a, and, having chosen a measurable u (t), 0 < t < zo, with values in 
v, we determine the strategy rE*_ Then the control u (1) is determined in accoidau.ce 
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with strategy rP and system (1.1) can be integrated on the interval [O, ~~1, obtaining 

trajectory 2 (t) . 
Let us show that a trajectory of system (1.1). not intersecting set M at a finite instant, 

corresponds to the strategy pair (rp, rE*) and to the point so (-co ?!? Af) TO do this 

we establish estimates for the measurement of functions vir (2) and cp; (2, p) along 

trajectory z (1), corresponding to the strategy pair (r,, FE*). For z. E S and i E 
I (lo) ,according to Taylor’s formula with a definite integral as the remainder term 

[63, the functions ‘piu (2) from 2a. i E fr (z,), Tip (z) from Zb, i E I, (z,), and 

rpi (2, P), i E 1, (so) can be represented along the trajectory z (t), 0 < t < r,, in 

the form q-1 _ 

%Y (2 (4) = c --go (20) + 
(4.4) 

j=o 

t. 

s l (t - z)‘ril-l (v$iq 

o (kil-- 1)i iY (2 (~119 f (2 (r)9 24 (4, UO)) & 

(the other two representations are analogous to (4.4)). 
By the definition of strategy r~*, z (7) E &., for z < 7,. Using inequalities (4.1)- 

(4.3) and Condition 2, from the representations of type (4.4) we obtain 

(PiY (2 (t)) 25 ipiY (GJ > 0, 0 < t < %I, i E 11 (2s) (2a) (4* 5, 

Vttr (2 (8)) < cPrtt @,I) < 0, 0 < r < ro, i = 11 (%) (2b) 

Vpi (2 (t), P) > Cpi ho, PI > 0, 0 < t < TO, i E 13 (ZO) 

Thus, for z0 E S and for each f E I (2s) the functions cpgu (z), pi (z, p) grow mo- 
notonically, while the functions qiP (z) decrease monotonically along trajectory z (t) 
during some time. Hence it follows that trajectory z (t) does not intersect the set 

iEcjz,) Mi 

on the time interval [O, ~~1. But since, by the construction of strategy rE*, 

z (t) does not intersect ._lJ ikri either during time ro, we have that z (t) does not 

intersect M on the inter%?[O, zs]. 

For zoz &’ , it also follows from the definition of strategy l?n* that z (t) does not 

intersect M on some interval [O, ts] , Consequently, if 7, +’ fzz T, rf= z+ E (2 (r)), 
then trajectory z (t) does not intersect M on the interval Ia, -c’] . 

Let us show that in any bounded subset 2 of set ~7 we can choose E (z) > z > 0, 
where the constant r depends only upon set Z. We denote Z as the closure of set 2, 
min o (2) = A. According to Condition 4 the family of functions (3.2) is equiconti- 
2E.z 

nuous on 2, i.e. for A > 0 there exists 6, > 0 such that 

for all zl, zs from Z such that II.% - z2 11 < 6, and for all z0 E 2 and i E I (zo). 
Thus, for any point zu E 2 each of the functions hlr@ (z), i E 1 (z,), is nonnegative 
or nonpositive in a neighborhood of radius not less than 6,. of this point. In addition, 

there exists a,> 0, such that for any point za e Z its neigh~rh~ fba, does not in- 
tersect the set _u Mi. We set 6 =inin (a,, 8,). Since trajectory z (t) satisfies in 

Z a Lipschita ~~rr$$ion with mstant L, for any point .z & Z we can choose. 



6 A.A.Chikrii 

bet us now assume that a trajectory z (t), starting from a point .zo ??? &f and corre- 
spending to the strategy pair (rp, r~*), first intersects the boundary of J!? at some 
finite instant t, i.e. for some i either qif (z (t*)) = 0 for any j = 1, 2, . . . , 
m (i) and Vii (2 (C+J) 4 0 for any i = m (i) + 1, m (c) + 2, . . . : rn (ii + 
J! (i), or Cpt (2 (&), P) < 0 for any p E p. But then 6 > 0 exists such that z (t) 
belongs to some bounded subset 2 of set s for all t, t, - 6 .< t < t?, ; moreoyer, 
by virtue of what has been said, the point t, must be the limit point for the points of T, 

corresponding to the trajectory. Since we can select e (2) > r in set 2, there exists 

an instant it1 E- T, t, - 6 < tl < t,, such that t, =: tr + p, where p < F 
(z (tl)). Since z (tl) E 8, by virtue of (4.5) and by continuity one of the relations 

rPi Cz Ct)7 P) > ‘pi Cz Ctl>7 P> Z 07 tl < t Q fl + 8 (z :tl)) 

is satisfied for each i e 1 (z (tr)) . By the definition of strategy rE:* the trajectory 

z (t) does not intersect the set u 
iZrtztf*,, 

Af%, on the interval ft,, tr t_ E (z (tr))] there- 

fore, we have arrived at a contradiction. The theorem is proved. 

5. Let us dwell on a linear system (1. l), I, = 4, q = 1, which includes the cases 
treated in [ 1, 23, and compare the results by examples, 

Example. In a Euclidean space En, n >, 2, the motions of two points z and Y, 
where x is the pursuer, y is the pursued, are given by the equations 

J(T) + a$-l) + . , + a,_0’ + a+ = u 

y(s) + b,yS-l + . 1 . -+- b,_l y’ + b,y = L’ 

M,=f {t5, y): r = y), s G n - I, u E u E. En, 1: E li E En, dill1 v = n 

Here XC(“) , yti) are derivatives of order i, ai, bj are linear mappings of space En into 
itself, U and I’ are convex compact sets. If one of the foliowing conditions is satisfied: 

(1) a< r, (2) for s = r a vector o exists such that Wr,+o (p) - Wrr (p) > 0 Vp E En, 

then escape is possible. These conditions are the same as the conditions in [Z] for n >, 
s + 1. In Pontriagin’s check example (II > 3) and in the “boy and crocodile”( l ) prob- 
lem (n >, 2), being special cases of the example considered, the sufficient conditions 

for escape agree with the conditions in f 1, 71, 

8. As an application let us consider the evasion problem under phase constraints 
[8-131. Let the state vector z of system (1.1) be constrained by the following restric- 
tion; it must not leave a set G, the terminal set 119 is convex and closed 

G =r: (2: gi (z) < 0, i = 1, 2, - * -9 r) (6.1) 

M = (2: (2, p) < WA4 (p) If p GE! EnI (6.2) 

* ) Ed it o r ’ s Note . The names of games mentioned in this paper in inverted commas 
are translated verbatim from the Russian original text. 
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Here ipi (z) are continuously differentiable functions. Player E tries to prevent the 

contact of a trajectory of system (1.1) with M, without violating the phase constraints 

(6.1) ; the aim of player P is to obstruct his opponent. We assume that M I-) G # (8. 
Having set 

Mi = (2: - Cpi (z)\< OI9 1=1,2,...,r (6.3) 

M = MT+p Mb= lfl n!fi. 
i=l 

we get that the problem of making system (1.1) evade set M under the constraints (6.1) 

is reduced to the problem of making system (1.1) evade a set M, with no constraints. 

The latter problem is a special case of the evasion problem in game (1.1). (1.2) with 

4 = 1, m (i) =O,l(i) =l,i =1,2, * l ., f. 
We assume that the set G is closed 

G = (2: rpi (2) < 0, i = 1, 2, . . +, r} (6.4) 

and that the inequalities in (6.4) satisfy the Slayter condition. If instead of (6.3) we 

assume 
~i={z:-rp(Pi(Z)<O}, i==l,&...,,r 

we get that the problem of system (1.1) evading M under constraints (6.4) is reduced 
to the problem of system (1.1) evading a set M, without constraints, which set is not 
closed. In this case, instead of (2.1) we should set 

St* z (2: qi (z) = 0}, i = f,2, -s-y c S = (S, U dG) \ Me 

where S, is an open set containing M,. The theorem on evasion of contact for this 

case can be proved under Conditions 1-4 without essential changes. 

The proposed approach permits us to obtain sufficient evasion conditions in problems 

of the type “games with a death line”, “a cornered rat”, “corridor patrolling” [14]. 
Example. The laws of motion of a pursuing and a pursued objects are given by the 

equations 
5” = u, Y' = u, /I u II d 1, II u II d 1, M = ((5, y): I zz y} 

where 5, y are vectors in a Euclidean space of dimension n > 2 ; moreover, the pur- 
sued object is constrained by the restriction: (;I, v) > 0, a is a constant vector, Here 
(a, 9) = 0 is the “hyperplane of death”. By carrying out the appropriate calculations 
we get that evasion is possible from any initial position (r, Y) such that z + y, (a, y)> 0 
and k, = 1. 

7, Let us consider the problem of escaping from several pursuers. Let the motion of 

each of N pursuers be described by the system of Eqs. (7, l), while the pursued moves in 
accordance with system (7.2) 

Xi' = JjJxi,Ui), i = 1227 *ma , N; f xi E ET<, ui~ Ui c E’i (7.1) 

y’=g(y,u), yc?E”~, u~Vc:ZP~ (7.2) 

Here ui, z1 are the players’ controls. Having denoted z = (.zr, za, . . . , xN, Y), on 
the direct product 

E”’ x Er’ x . . . x &fN x E’” 

we delineate the terminal set &f 
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where {ti}le = (xii, ~i2, , . . , xi?), 

are the first e coordinates of the corresponding vectors. 

We assume that the conditions analogous to Conditions 1-4 are fulfilled for the sys- 
tem f 7. l), (7, Z), ensuring the existence, uniqueness and contin~bility of the solution of 

(7.1). (7.2). The support function of set lMi has the form Ww, (p) = 0 if (pi=-po)ret 

IPi1::t = 0, {Pl%r = 0, pj = 0 (if i), wJ+fi (p) = 00 if even one of the indicated 
conditions is not satisfied. llere p = (pl, pz, . . . , pN, po) E E” X ET’ X . . . x E*x x 
Era. We see that the problem of system (7. l), (7.2) evading a set M of form (7.3) is 
included in scheme proposed earlier. 

Example. The laws of motion of the pursuers and of the escaper are given by the 
equations 21.. = ui xa.’ = us, lJ = u II u1 II < a, II u2 II G B, II v II d 1, a? B > 1 

M = Ml U Ma, Ml = {(XI, y): 51 = Y), M, = {h Y): 2.z = V} 
where xl, x2, y are vectors in a Euclidean space of dimension n > 2. It can be verified 
that evasion is possible from any position such that zcr # y, xs # y, with k, = 1. 

The author thanks B. N, Pshenichnyi for discussing the results. 
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We quote sufficient conditions for evasion of contact in a game of two nonlinear 

objects with integral constraints on the control. 

1. Let t, be a fixed real number. Let the laws of motion of the pursuing vector 
x E En and of the escaping vector y E En be described for t > t, by the vector 
differential equations 

d”z / dt” = L (t, X) -f- a, x = 601 (x1, . . . , x“), li = u (t) E En 

x = coi p,4”‘, xc’, . . * , s@-‘f}; 5(i) = d% / dti, 
fL 1) 

O<i,(k---l 

L (t, X) zzz L (t, xw, . . . , de)n, io, . ‘ . , dk-QTL) 

d’y ! dtl = H (t, Y) + v, y = co1 (y”, . . . 3 y”), 2)= 7I@)E.E 

Y = co1 {y(O), . . . , yV-‘)I; yW s djy / dtJ, 
(1.2) 

O<j< 1-i 

H (t, Y) = H (t, y(Ofl, . . . . , y(o)n, y(‘) I, . . . ) yf*-lq 

Here E” is an n-dimensional Euclidean space, n (v) is an everywhere finite vector- 
valued function, measurable for t > to , 

[t1, t,l c [h), + -1 
whose scalar square we sum on any interval 

, called the control of the pursuer (escaper), X (Y) is the phase 
vector of the pursuer (escaper), L (t, X), H (t, Y) are vector-valued functions con- 
tinuous together with their first-order partial derivatives in all variables, 

We assume that the following condition is satisfied for game (1.1)‘ (1.2): for arbitrary 
collection z* = {t*, X,, Y,}, t, > t, called the (initial) point of the game,and 
for arbitrary players’ controls, the solutions X (t) and Y (t) of Eqs. (1.1) and (1.2). res- 
pectively, in the sense of Carathkodory Cl], with initial values X (t,) =: X,, Y (t*)= 
Y, , exist on the whole interval [t,, + 001. 

The following constraints are imposed on the players’ controls : 
+m 

(1.3) 

(1.4) 


